Color-changing indicators highlight microscopic damage

1/15/2016 Liz Ahlberg, Physical Sciences Editor, News Bureau, University of Illinois at Urbana-Champaign

Scott White's group has developed new material that autonomously indicates mechanical damage.

Written by Liz Ahlberg, Physical Sciences Editor, News Bureau, University of Illinois at Urbana-Champaign

Aerospace Engineering at Illinois Prof. Scott R. White
Aerospace Engineering at Illinois Prof. Scott R. White
Scott White
Damage developing in a material can be difficult to see until something breaks or fails. A new polymer damage indication system automatically highlights areas that are cracked, scratched or stressed, allowing engineers to address problem areas before they become more problematic.

The early warning system would be particularly useful in applications like petroleum pipelines, air and space transport, and automobiles – applications where one part’s failure could have costly ramifications that are difficult to repair. Led by Aerospace Engineering at Illinois Prof. Scott White and AE affiliate Nancy Sottos, a professor of materials science and engineering, the researchers published their work in the journal Advanced Materials.

“Polymers are susceptible to damage in the form of small cracks that are often difficult to detect. Even at small scales, crack damage can significantly compromise the integrity and functionality of polymer materials,” Sottos said. “We developed a very simple but elegant material to autonomously indicate mechanical damage.” 

The researchers embedded tiny microcapsules of a pH-sensitive dye in an epoxy resin. If the polymer forms cracks or suffers a scratch, stress or fracture, the capsules break open. The dye reacts with the epoxy, causing a dramatic color change from light yellow to a bright red – no additional chemicals or activators required.

Nancy Sottos and Wenle Li
Nancy Sottos and Wenle Li
Nancy Sottos and Wenle Li
The deeper the scratch or crack, the more microcapsules are broken, and the more intense the color. This helps to assess the extent of the damage. Even so, tiny microscopic cracks of only 10 micrometers are enough to cause a color change, letting the user know that the material has lost some of its structural integrity.

“"Detecting damage before significant corrosion or other problems can occur provides increased safety and reliability for coated structures and composites,” White said. White and Sottos are affiliated with the Beckman Institute for Advanced Science and Technology at Illinois.

The researchers demonstrated that the damage indication system worked well for a variety of polymer materials that can be applied to coat different substrates including metals, polymers and glasses. They also found that the system has long-term stability – no microcapsule leaking to produce false positives, and no color fading.
In addition to averting unforeseen and costly failure, another economic advantage of the microcapsule system is the low cost, Sottos said.

The coating, applied to a steel plate, brightly highlights a thin zigzag scratch.
The coating, applied to a steel plate, brightly highlights a thin zigzag scratch.
The coating, applied to a steel plate, brightly highlights a thin zigzag scratch.

“A polymer needs only to be 5 percent microcapsules to exhibit excellent damage indication ability,” Sottos said. “It is cost effective to acquire this self-reporting ability.”
Now, the researchers are exploring further applications for the indicator system, such as applying it to fiber-reinforced composites, as well as integrating it with the group’s previous work in self-healing systems.

“We envision this self-reporting ability can be seamlessly combined with other functions such as self-healing and corrosion protection to both report and repair damage,” Sottos said. “Work is in progress to combine the ability to detect new damage with self-healing functionality and a secondary indication that reveals that crack healing has occurred.”

The BP International Centre for Advanced Materials supported this work. Postdoctoral researcher Wenle Li was the first author of the work, and graduate students Christopher Matthews, Michael Odarczenko and Ke Yang were co-authors.

Editor’s notes: To reach Nancy Sottos, call 217-333-1041; email: n-sottos

at
at
illinois [dot] edu. To reach Scott White, call 217-333-1077; email swhite
at
at
illinois [dot] edu
.
The paper “Autonomous Indication of Mechanical Damage in Polymeric Coatings” is available online [LINK when available].

 
 


Share this story

This story was published January 15, 2016.